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ABSTRACT

Traces between requirements and code reveal where require-
ments are implemented. Such traces are essential for code
understanding and change management. Unfortunately, traces
are known to be error prone. This paper introduces a novel
approach for validating requirements-to-code traces through
calling relationships within the code. As input, the approach
requires an executable system, the corresponding require-
ments, and the requirements-to-code traces that need vali-
dating. As output, the approach identifies likely incorrect or
missing traces by investigating patterns of traces with calling
relationships. The empirical evaluation of four case study
systems covering 150 KLOC and 59 requirements demon-
strates that the approach detects most errors with 85-95%
precision and 82-96% recall and is able to handle traces
of varying levels of correctness and completeness. The ap-
proach is fully automated, tool supported, and scalable.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Statistical methods, Validation

General Terms

Algorithms, Measurement, Reliability, Verification

Keywords

requirements, traceability, feature location, validation

1. INTRODUCTION
Requirements-to-code traces reveal where a requirement

is implemented in the code. This is important for program
comprehension and understanding change impact. Traces
are most useful in cases where developers are not familiar
with the source code – a situation that likely occurs during
maintenance. It has been shown in several experiments [17,
22] that lack of understanding where a requirement is imple-
mented leads to higher effort and more errors. This is not
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surprising because in such a case a developer is more likely
to perform changes at inappropriate places in the code [8, 13,
19, 21], accelerating code degradation. Capturing and main-
taining requirements-to-code traces is therefore mandated
by many standards (such as CMMI level 3) and software
engineering techniques [1, 3, 18].

Unfortunately, capturing and maintaining traces is an error-
prone activity. Some automation exists but many approaches
are not applicable to informal/unstructured requirements [10],
which are common in practice. The few techniques, that
do apply vary widely in quality [6] and often require elab-
orate descriptions of requirements, requirements dependen-
cies, and/or the code to deliver good results. Even if traces
are captured by the original developers and are thus ex-
pected to be of good quality, these traces may deteriorate
over time as the system evolves. Trace maintenance coun-
ters this problem but as Kong et al. [13] have shown, manual
trace maintenance is highly error prone and often made the
quality of traces worse.

This paper introduces an automated, tool-supported ap-
proach for identifying errors among requirements-to-code
traces by exploring patterns of traces and calling relation-
ships within the code (i.e., method or function). For exam-
ple, a given method is likely implementing a given require-
ment if it is called or calls other methods that also implement
the given requirement. Our approach thus computes a trace
expectation for a given method by investigating the known
traceability of neighboring methods (callers and callees). An
error is reported if this expectation differs from the known
trace of the given method.

As input, our approach requires 1) existing requirements-
to-code traces that need validation and 2) a call graph reflect-
ing method/function calls in the code. The approach does
not require special requirements descriptions nor knowledge
about requirement dependencies. However, the approach
does assume the code to be of good quality (i.e., executable
and testable for the given requirements) though it is largely
immune to isolated code errors. This assumption is realistic
because traceability is typically needed during maintenance
where the code has stabilized. To calibrate our approach,
we empirically evaluated it on four open-source case study
systems – totaling over 150 KLOC and 59 selected require-
ments. We chose these systems because we had high-quality
requirement-to-code trace links, provided by their develop-
ers. The requirements were mostly functional and were of-
ten inter-dependent (cross-cutting) as is typical in practice.
The empirical validation of the calibration showed that our
approach applies to about 76-94% of the requirements-to-



code traces (coverage) and most of these traces are vali-
dated with >90% correctness. Good performance on cali-
bration data, however, does not necessarily imply our ap-
proach’s ability to cope with traces of decreasing quality.
We thus performed an empirical study to understand the
impact of input trace quality on the validation quality by
organizing an elaborate experiment involving 85 subjects,
who manually generated about 30,000 requirements-to-code
traces ([8] discussed the experiment in detail). Since the
subjects were predominantly inexperienced students, it can
be assumed that this study led to traces of a wide range of
qualities – quite possibly the worst quality which is a de-
sired property here because the evaluation showed that our
approach was able to validate even these traces with high
precision and recall. While the quality of our approach does
decrease with decreasing trace input quality and complete-
ness, this decrease is small (>80% correctness even if 50%
of the traces of a given requirement were incorrect). The ap-
proach thus vastly outperforms the ability of humans (which
peaked around 50% correctness [13]). Also, contrary to man-
ual validation, our approach’s validation feedback becomes
increasingly better with increasing input trace input quality.

This paper is based on a short paper which appeared in
ASE 2011 [9] using a similar data set. The short paper
demonstrated that code implementing a given requirement
typically forms connected regions. This paper builds on this
foundation and provides an algorithm for trace validation
and an empirical study testing the algorithm’s ability to cope
with traces of varying levels of correctness and completeness.

The goal of this paper is to describe an algorithm for vali-
dating requirements-to-code traces. As input, the algorithm
takes calling relationships in the code and a requirements-
to-code trace matrix (RTM) were the matrix cells represent
the individual relationships between code (methods/func-
tions) and requirements. As a result, the algorithm produces
feedback on traces which are presumed incorrect or missing.
Since the algorithm proposed in this work is not immune
to varying input quality, the goal of this paper is also to
demonstrate that the quality of its feedback remains high
with diminishing quality/completeness of input RTMs.

2. RELATED WORK
In last two decades, multiple traceability techniques have

been presented where different approaches are applied to re-
trieve and/or maintain trace links between code and other
software artifacts. These approaches exploit either textual
characteristics [2, 11, 14], static structures [4], or dynamic
information [2, 12, 14] of software artifacts. Each technique
analysed this information in order to provide a certain un-
derstanding to the implementation of different requirements
in the system. There are also hybrid approaches that com-
bine multiple technique types in one approach (e.g., CER-
BERUS [7]). Usually, these approaches deliver a ranked list
of potential traces among the input software artifacts where
higher-ranked traces are presumed to be more correct traces.
Calling relationships in particular have been used to improve
the reported ranking of traces in information retrieval ap-
proaches [2, 5, 7, 16].

Multiple researchers investigated also the usefulness of
traceability during software engineering. Traceability pro-
vides an important support for software engineering activ-
ities, such as impact analysis, reverse engineering, and re-
gression testing. But, most proposed methods are related

Table 1: Information on the Four Study Systems
VoD Chess Gantt JHD

Language Java Java Java Java
KLOC 3.6 7.2 41 72
# Executed Methods 169 405 2591 1763
# Sample Reqs. 13 8 17 21
Size of Gold Standard 2197 3240 44047 37023

to Automatic Trace Generation (ATG). They mainly aim to
create or recover trace links from scratch. Different software
artifacts, as well as derivatives thereof, are expected as in-
put. The output would be a set of possible recognized trace
links. Although the proposed methods are fully automated
and tool supported, a manual check must be performed in
order to verify the quality of each technique. The results
of those methods are validated against a benchmark trace
link knowledge base (e.g., gold standard RTM) which was
initially created manually. If an ATG method would be per-
formed on a system without such a benchmark knowledge
base, we would never know how good the produced trace
links are.

Indeed, the strongest motivation for our work comes from
a study by Kong et al. [13] who conducted an experiment
about manual trace link maintenance. As could be expected,
the effectiveness of trace maintenance is the quality of the fi-
nal RTM is influenced by the initial RTM. They made a very
interesting observation: Participants who validated RTMs of
poor quality tended to improve the RTM. Participants vali-
dating good quality RTMs, however, made more errors than
correct decisions during the maintenance of RTMs making
the accuracy of the input RTM worse. Based on that study,
we conclude that manually validating traces does not neces-
sarily guarantee a better accuracy in the final RTM.

While the relationships between traces and calling rela-
tionships in the code have been explored in the past [7, 16,
20], they have never been exploited together with potentially
erroneous traces for validation. It is also noteworthy that
our approach investigates each requirement’s relationship to
the source code independently of other requirements (i.e.,
unlike feature interactions technologies which are based on
cross-cutting concerns [15], concern graphs [23] or concept
lattices [24]).

3. CASE STUDIES
To validate our approach, we investigated four software

systems between 3-72 KLOC in size and 59 randomly chosen
requirements (covering functional, non functional, and cross-
cutting requirements). The systems were VideoOnDemand
(VoD), Chess, GanttProject, and jHotDraw (JHD) and their
basic characteristics are depicted in Table 1. We chose them
because of the availability of high-quality requirements-to-
code traces – a gold standard provided by original developers
(in case of the larger systems GanttProject and JHD) or
developers familiar with the code (in case of the smaller
systems VoD and Chess). We used the gold standard to gain
confidence that the patterns we identified were indeed likely
or unlikely (important for confirming or rejecting traces as
will be discussed later). We also used the gold standard for
evaluating the quality of the reported errors generated while
validating subject RTMs to assess our approach’s ability to
cope with decreasing quality of the input RTM.

As is common, we represent traces in form of Require-
ments Trace Matrices (RTM). Each RTM contains m × n



Table 2: Excerpt of RTM from Chess System
Method \ Requirement R1: Play Move R2: Show Score
addPlay() X X
afterPlay()

doPlay() X
dropPiece()

getPiece()

getIndex() X X
initPiece()

initPos()

setColor()

setPiece() X

cells where m is the number of requirements and n is the
number of code elements (methods in this case). Table 2
depicts an excerpt of such a RTM for the Chess system. A
cell is either a trace (’X’) or a no-trace (blank). A trace in
a cell implies that the given code element (row) implements
the given requirement (column). A no-trace in a cell implies
that the code element is not implementing the requirement.
We refer to a trace also by the abbreviation ’t’ and to a no-
trace by the abbreviation ’n’. Note that a RTM may also
be incomplete if rows (code) or columns (requirements) are
missing.

As was mentioned in the introduction, our approach uses
calling relationships among code elements to help validate
the correctness of the given requirements-to-code traces. There
are standard tools available for recording execution logs dur-
ing program execution. For example, the Java JDK provides
an easy and reliable interface for recording method calls at
runtime. We used this interface to record the calling rela-
tionships while each system was being tested. Each system
was tested according to use case descriptions of the gold
standards. But the testing was not limited to the sample
requirements nor was it attempted to test the requirements
individually to avoid any bias towards particular require-
ments. The use of the Java JDK ensures that there are no
false calling relationships; However, incomplete testing may
result in missing calling relationships. The implications of
this will be discussed later in more detail.

The nodes in the resulting call graph represent individ-
ual classes, methods, or functions, depending on the level of
granularity chosen. In this work, we focus on methods only
but our approach should be applicable to non-OO languages
(e.g., functions in C) as well as coarser granularity (classes or
packages). Figure 1 depicts a small excerpt of the call graph
for the Chess System. The nodes are labeled with method
names and for brevity the figure depicts those listed in the
RTM in Table 2 only. The edges in the call graph represent
the method calls. These edges are directed arrows to distin-
guish the caller and the callee. For example, since method
getPiece calls method initPiece, the node corresponding
to getPiece has a directed arrow to the node corresponding
to initPiece. We say that getPiece is a caller of initPiece,
and, in reverse, that initPiece is a callee of getPiece. Note
that there is exactly one node for every method. We thus
use the terms node and method synonymously in the paper.

4. PATTERNS AND ALGORITHMS
We found that methods implementing a given requirement

are very likely to call one another (88-99%) [9], forming re-
gions of connected methods. These regions may vary in size
and may also overlap if their corresponding requirements are

getIndex()

afterPlay() doPlay()

getPiece() initPiece()

initPos()

setPiece()addPlay()
setColor()

...
...

......

...

dropPiece()

Figure 1: Modified Excerpt of Call Graph from the
Chess System (R1 Region Highlighted in Gray)

implemented in close proximity or depend on one another.
Our approach to trace validation exploits these regions.

4.1 Principles
Figure 1 shows an example of a region (gray area). The re-

gion identifies all methods (nodes) that trace to requirement
R1 of the illustrative Chess system (note that the methods
inside the gray area are defined to trace to R1 in the RTM
in Table 2). The surrounding area represents the methods
that do not trace to that requirement. We see that the nodes
in the region are generally connected directly or indirectly;
though it is not uncommon to have multiple regions also.

To understand the principles of trace validation, let us
now assume the existence of an incorrect trace. Obviously,
an incorrect trace (=false ’t’) may only exist in an area out-
side the region (all methods inside the region are correct
’t’s). If that false ’t’ exists far off the region then it is fully
surrounded by methods that all do not trace to the given
requirement. A method that is labeled as tracing to a given
requirement in the input RTM but is being surrounded by
methods that do not trace to that requirement thus indi-
cates an erroneous trace with a high likelihood of correctness.
Take for example the method dropPiece. This method does
not trace to R1. However, if it were falsely labeled as trac-
ing to R1 in the input RTM then it would form its own mini
region and be surrounded by methods that do not trace to
R1. Our approach would identify this method as an erro-
neous trace because it would be disconnected from a larger
requirements region which is counter to the observation in
[9]. Let us next assume the existence a missing trace (a false
’n’). A missing trace is a method that is currently marked as
not tracing to a given requirement but should be tracing. A
false ’n’ may only exist inside the region (all methods outside
the region are correct ’n’s). If that false ’n’ is surrounded by
methods that trace to the given requirement then this indi-
cates a missing trace with a high likelihood of correctness.

Listing 1: Trace Validation
va l i d a t eC e l l ( RTMCell c )

expect = getExpectat ion ( c . method , c . req )
i f ( c . value = expect . value )

return <CORRECT>
else

return <ERROR>

Algorithm 1 depicts the simple principle behind trace val-
idation. Each cell of the RTM is investigated separately
where each cell represents the traceability between exactly
one method and one requirement. The algorithm then com-
putes an expected trace for that cell which is based on the



Caller method any Callee method

Requirement

no-trace

calls calls

no-trace

Caller method any Callee method

Requirement

trace

calls calls

trace

where caller≠callee≠any

Figure 2: ”t→any→t” and ”n→any→n” Patterns

traceability of the neighboring methods. While the neighbor-
ing methods are the same for all cells in a row, their expecta-
tions may differ because they are investigated in context of
different requirements. The complexity of trace validation
is thus in computing an expectation which is discussed next.

4.2 T and N-Surrounding Patterns
The notion of ”surroundedness” forms the basis for under-

standing expectation. There are two primary patterns: The
t→any→t pattern (depicted in Figure 2-top) applies to any
method that has at least one caller method (the any method
is called by the caller method) and at least one callee method
(the any method calls this callee method) where both the
caller and callee trace ’t’ to a same, given requirement. Note
that the any method represents an arbitrary method.

The n→any→n pattern (depicted in Figure 2-bottom) is
simply the negation in terms of traceability. It applies to any
method that has at least one caller method and at least one
callee method that both do not trace to a given requirement.

Figure 3 depicts an excerpt of the Chess system introduced
earlier that combines the call graph with the input RTM. For
example, we know from the call graph that afterPlay calls
doPlay and we know from the input RTM that afterPlay
does not implement requirement R1 while doPlay does. This
is depicted in the graph where thick arrows denote calling re-
lationships, thin-solid arrows denote trace relationships and
thin-dashed arrows denote no-trace relationships. We can
identify a t→any→t pattern for method setPiece validated
on requirement R1 because it is called by doPlay and calls
getIndex which both trace to requirement R1. Similarly,
we can identify a n→any→n pattern for method doPlay val-
idated on requirement R2 because afterPlay and setPiece

do not trace to R2.
We thus expect that setPiece traces to requirement R1

and we expect that doPlay does not trace to requirement
R2. For trace validation we simply compare these expected
values with the their corresponding cell values in the input
RTM. Consulting Table 2, we find that our expectations are
consistent with the actual cell values in both cases, and thus,
our approach would confirm the correctness of these two in-
put RTM cells. Note that neither the t→any→t pattern nor
the n→any→n pattern used the trace information of the any
method. The patterns merely used the trace information of
the surrounding methods. The expected value computed
through these patterns is thus derived without knowledge of
the traceability of the cell being validated.

The t→any→t pattern expects a likely trace whereas the
n→any→n pattern expects an unlikely trace (or a likely no-
trace). This is useful for trace validation to confirm or re-
ject a trace. However, as is common in traceability research,
there are exceptions to their validity and below we will dis-
cuss some of these cases. It should be noted that we inves-
tigated more elaborate patterns (such as the any method

afterPlay() doPlay() setPiece() getIndex()

R1:Play Move

R2:Show Score

traceno-trace

calls calls calls

Figure 3: Surrounding Patterns in Chess

Caller any

t

trace

calls calls

trace

any

t

no-trace

calls calls

no-trace

where s caller≠caller≠any

Figure 4: ”t→t→any” and ”n→n→any” Patterns

having at least two callers and callees) and such patterns
improve the quality. However, we also found that more elab-
orate patterns are much less likely to be applicable (there
are comparatively few methods that have two callers and
callees with the same trace than compared to single callers
and callees). More elaborate patterns are thus little help-
ful in improving the overall quality. We will see later that
a far greater effect can be achieved by combining the sim-
ple t→any→t and n→any→n patterns into more elaborate
structures.

4.3 Inner, Leaf, and Root Methods
The t→any→t and n→any→n patterns are useful only

for methods that have both caller(s) and callee(s). We re-
fer to such methods as inner methods (inner nodes in the
call graph). Unfortunately, many methods do not call other
methods – so called leaf methods which are leaf nodes in the
call graph. In Figure 1, an example of such a leaf method is
setColor. In context of the four case study systems, roughly
half the methods are leaf methods. In the absence of a callee
method, we define two additional patterns, depicted in Fig-
ure 4. The t→t→any pattern implies a likely trace if the
given method has a caller that traces to a given requirement
and this caller has in turn a caller that also traces to the
given requirement. The n→n→any pattern is the opposite
and implies an unlikely trace (or a likely no-trace).

A call graph usually has root methods also but they are
rare. Indeed, all four case studies had few root methods
each – the Java main() method is always one of them, often
it is the only one. Other roots are typically methods starting
separate threads (e.g., Thread.start()). Root patterns and
their treatment are analogous to leaf patterns. Since root
methods are rare they are of little significance and will be
ignored in the remainder of this work.

4.4 Boundary Patterns
The inner method and leaf method patterns (t→any→t,

n→any→n, t→t→any, and n→n→any) are not applicable to
all methods. As was discussed earlier, requirement regions
have boundaries where a method not implementing a given
requirement calls a method implementing it or vice versa.
We find such boundary cases in Figure 3 where, for exam-
ple, method doPlay implements requirement R1 and calls
setPiece which implements the same requirement, but it is
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trace
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Figure 5: Mixed and Pure Patterns in Chess

called by method afterPlay which does not implement R1.
We can think of such methods as entry and/or exit points
to/from regions. We speak of a boundary pattern for:

• inner methods having a caller that traces to a given
requirement while none of the callees do (t→any→n)
or, in reverse, having a callee that traces to a given
requirements while none of the callers do (n→any→t).

• leaf methods having a caller that traces to a given re-
quirement while none of the caller’s caller trace to the
given requirement (n→t→any) or as having no caller
that trace to the given requirement while at least one
caller’s caller does (t→n→any).

The expected values of T and N surrounding patterns
(t→any→t and n→any→n) are intuitive to understand: the
any method in a t-surrounding is expected to have a trace
’t’ link; the any method in a n-surrounding is expected to
have a no-trace ’n’ link. But, this simple intuition does not
work for boundary patterns. Indeed, empirical observations
(discussed later) show that the likelihoods of any boundary
method tracing to the requirements vs. not tracing to that
requirement is roughly 50% – or random. Since it is not
useful to make random guesses, it may appear that bound-
ary methods are failure scenarios where our approach fails
to compute a useful expected value. But, even here our
approach does not necessarily fail as will be discussed next.

4.5 Combinations: Pure and Mixed Patterns
Thus far, we discussed patterns in isolation. However,

these patterns often occur together. Figure 5 illustrates such
cases in context of the Chess system. This figure is analogous
to Figure 3 but involves more methods. In context of require-
ment R1, the n→any→n pattern can be found through a pat-
tern involving the afterPlay, doPlay(any), and getPiece

methods. This pattern expects that the doPlay method does
not trace to requirement R1. Additionally, the n→any→t
boundary pattern can be found through a pattern involv-
ing afterPlay, doPlay(any), and setPiece methods. This
boundary pattern suggests that it is not decidable whether
doPlay traces to requirement R1. The method doPlay is
thus involved in a n-surrounding pattern and a border pat-
tern at the same time.

If multiple patterns can be matched on the given method
(any) then one of two situations applies:

• Pure Patterns: all patterns are of the same kind. For
example, in context of requirement R2 the doPlaymethod
is involved with two n-surrounding patterns: one is
found with afterPlay and setPiece; and another with
afterPlay and getPiece.

• Mixed Patterns: the patterns are of different kinds.
For example, method doPlay is involved in a mixed
pattern with R1 as was discussed above.

The combined meaning of pure patterns are simple to de-
cide: multiple t→any→t patterns re-confirm a likely trace;
multiple n→any→n re-confirm an unlikely trace. Pure pat-
terns are quite advantageous because in combination their
likelihoods increase, making them more reliable patterns for
trace validation. E.g., the empirical validation discussed lat-
ter confirmed that if any method has two or more t→any→t
patterns applying than the method is more likely to trace
than compared to a method with a single t→any→t pattern.
Mixed patterns, however, require further elaboration.

4.6 Trace, No-Trace over Boundary Dominance
A boundary pattern implies that it is not possible to de-

cide on a likely or unlikely trace. Therefore, if a bound-
ary pattern is found in combination with a likely pattern
(t→any→t or t→t→any) or an unlikely pattern (n→any→n
or n→n→any) then the likely/unlikely patterns dominate
and we ignore the existence of the boundary pattern. We
define dominate as meaning that, say, in case the t→any→t
pattern applies to the same method (any) and requirement,
this method is likely to trace to R, ignoring the boundary
pattern. This was confirmed through the empirical evalua-
tion of the four case study systems and their gold standards
as will be discussed later. Most boundary patterns are ig-
nored in this manner. Only if all patterns applying to a
method are boundary patterns, a ”pure boundary pattern”
so to speak, then we truly cannot decide whether the method
is expected to trace or expected to not trace to the given re-
quirement. We will see later that our approach fails in a
small percentage of RTM cells only.

4.7 Trace over No-Trace Dominance
But what if a likely trace pattern (t→any→t) occurs to-

gether with an unlikely trace pattern (n→any→n)? It is
common for the t→any→t and n→any→n patterns to occur
together. This happens when on each side (caller and callee)
of a method, there are at least one method that traces to a
given requirement and another that does not. Figure 5 de-
picts such an example for setPiece. The t→any→t pattern
(involving doPlay and getIndex) suggests that setPiece

traces to requirement R1. The n→any→n pattern (involving
initPos and setColor) clearly suggests the opposite.

This apparent conflict is the result of cross-cutting require-
ments and/or feature interactions. In such cases, the code
serves a purpose that supports a trace and another purpose
that does not. Indeed, trace/no-trace conflicts of this kind
are common in all four study systems and, upon empirically
evaluating this issue on their respective gold standards, we
observed that in such cases the t→any→t pattern dominates
the n→any→n pattern.

The rationale for this empirical observation has to be seen
in the context of granularity. It is said that if some code
traces to a given requirement then this code implements the
requirement either in part or full. Traceability is rarely ex-
clusive and it is implicitly understood that the code may also
implement other requirements. For example, in the context
of Java class, even if only few methods of a class implement
a given requirement then we say nonetheless that the class
implements that requirement. Hence trace dominates no-
trace.



4.8 Algorithm for Computing Expectation
Considering above discussion, a concise mechanism emerges

that helps us decide whether any method is expected to trace
or expected not to trace to a given requirement; or cannot
be decided upon (fail). Algorithm 2 depicts the mechanism
for computing the expected values of inner methods. We
use a counting scheme because it is very efficient to execute
compared to pattern matching algorithms. Four variables
are used: #callerT identifies the number of callers of the in-
put method that trace to the given requirement R; #callerN
identifies the callers that do not trace to R; #calleeT iden-
tifies the number of callees that trace to R; and #calleeN
identifies the number of callees that do not trace to R. Since
this algorithm is called only for inner classes, we know that
there must be callers and callees.

Listing 2: Get Expectation for a Given Inner
Method and Requirement
get InnerExpectat i on (method M, requi rement R)
#ca l l e rT:=#M. c a l l e r t r a c i ng to R
#ca l l e rN:=#M. c a l l e r not t r a c i ng to R
#ca l l e eT:=#M. c a l l e e t r a c i ng to R
#ca l l eeN :=#M. c a l l e e not t r a c i ng to R
i f ( #ca l l e rT > 0 & #ca l l e eT > 0)

i f ( #ca l l e rN+#cal l eeN = 0)
return <TRACE, PURE>

return <TRACE, MIXED>
else i f ( #ca l l e rN > 0 & #ca l l eeN > 0)

i f ( #ca l l e rT+#ca l l e eT = 0)
return <NO TRACE, PURE>

return <NO TRACE, MIXED>
return <FAIL , BOUNDARY>

The algorithm shows that a given method is expected to
trace to a given requirement if at least one caller method
traces to the requirement (#callerT>0) and at least one
callee method traces to the given requirement (#calleeT>0).
If the trace is a pure trace then there also should be no caller
and no callee methods that do not trace to the given re-
quirement (#callerN+#calleeN=0). The algorithm thus re-
turns either pure or mixed trace depending on the outcome.
Similarly, the algorithm shows that a method is expected
to not trace to a given requirement if both #callerN and
#calleeN are greater than zero (i.e.., N surrounding). The
T-over-N dominance is implied in the order of the ifs (trace
checking before no-trace checking). Note that at the time of
no-trace checking, it is no longer possible that both callers
and callees trace to the given requirement. However, it is
still possible that either caller or callee traces to a require-
ment. This allows us to distinguish a pure no-trace from a
mixed no-trace (note that the mixed no-trace is essentially
the N-over-boundary dominance). All other situations are
failure scenarios (i.e., pure boundary patterns). As men-
tioned earlier, the algorithm distinguishes pure from mixed
patterns and leaf from inner methods because the likelihoods
of correctness are different. This is discussed below. Not de-
picted is the algorithm for computing the expected values for
leaf methods because it is essentially identical if we assume
the variable #calleeT to stand for callers’ callers that trace
to the given requirement and #calleeN to stand for callers’
callers that do not trace.

4.9 Expectations for Incomplete RTMs
The RTM in Table 2 is complete because it identifies for

every cell whether it traces or does not trace to a given

requirement. However, we believe that it is useful to dis-
tinguish defined traces/no-traces from undefined traces (in-
completeness). Since to date very little work is available for
maintaining traces, it is not a common practice to provide
partially complete RTMs. However, we believe that develop-
ers may want to start validating RTMs even at times where
the RTMs are not yet fully captured. Thus trace mainte-
nance ought to apply to incomplete RTMs also. Our ap-
proach allows for arbitrary cells to be left undefined (’U’).
Undefined cells cannot be validated because the expected
value cannot contradict or confirm an undefined cell. At
best, the expected value could be used for auto completion.
However, undefined cells obstruct the validation of other
cells. The following defines what happens if a pattern en-
counters an undefined cell.

Listing 3: Get Expectation for a Given Inner
Method and Requirement with Incompleteness
get InnerExpectat i on (method M, requi rement R)
. . .
#ca l l e rU:=#M. c a l l e r with undef ined t r a c e s to R
#ca l l eeU :=#M. c a l l e e with undef ined t r a c e s to R
i f ( #ca l l e rT > 0 & #ca l l e eT > 0)

i f ( #ca l l e rN = 0 & #cal l eeN = 0 &
#ca l l e rU = 0 & #cal l eeU = 0)

return <TRACE, PURE>
return <TRACE, MIXED>

else i f ( #ca l l e rN > 0 & #ca l l eeN > 0)
i f ( #ca l l e rT = 0 & #ca l l e eT = 0 &

#ca l l e rU = 0 & #cal l eeU = 0)
return <NO TRACE, PURE>

i f ( #ca l l e rU > 0 & #ca l l eeU > 0)
return <FAIL , INCOMPLETE>

return <NO TRACE, MIXED>
else i f ( #ca l l e rU > 0 | #cal l eeU > 0)

return <FAIL , INCOMPLETE>
return <FAIL , BOUNDARY>

Algorithm 3 expands on Algorithm 2. For brevity, we
again restrict this discussion to inner methods. As was dis-
cussed above, the leaf methods are handled analogously. The
algorithm introduces two more variables to reflect the num-
ber of undefined callers and callees – #callerU identifies the
number of calling methods that have undefined traces and
#calleeU identifies the number of callee methods with un-
defined traces. To understand Algorithm 3, we must under-
stand that an undefined cell is a placeholder for either a trace
or a no-trace – we just do not know yet. The implication
of an undefined trace is thus explored by considering both
possible interpretations. For example, Algorithm 3 has an al-
ternative fail scenario at the end. The last ”else if” statement
is reached only when all caller methods and all callee meth-
ods have undefined traces to a given requirement (pure and
mixed scenarios are addressed by earlier statements). The
method may thus trace to the requirement (if the undefined
traces are eventually changed to traces), the method may
not trace (if the undefined traces are eventually changed to
no-traces), or we may even fail to compute an expectation
for the undefined traces (if the traces resolve to a bound-
ary pattern). Anything is possible. Our approach reports
this problem as failure to compute an expectation due to
incompleteness. Note that this failure is a factor of the com-
pleteness of the input and not a limitation of the approach
as in boundary patterns and thus we distinguish boundary
from incompleteness failure. A more complete input would
fix this failure.



The existence of undefined traces does not always lead
to failure to compute an expectation. Let us assume that
the RTM cell for getPiece and requirement R2 is undefined
in Table 2. The cell getPiece cannot be validated; how-
ever, the cell for its neighboring method doPlay can (recall
Figure 5 but assume that there exists no ”no-trace” edge be-
tween getPiece and R2). During the validation of method
doPlay on requirement R2 we find a n→any→n pattern in-
volving methods afterPlay, doPlay, and setPiece. How-
ever, no patterns apply to the methods afterPlay, doPlay,
and getPiece because the trace for getPiece is undefined.
Method getPiece may either trace to requirement R2 or
it may not. If it were to trace then methods afterPlay,
doPlay, and getPiece would form a n→any→t boundary
pattern. We know that the n→any→n pattern above would
dominate this boundary pattern and hence we would ex-
pect that doPlay does not trace to R2. If method getPiece

were not to trace to R2 then methods afterPlay, doPlay,
and getPiece would form another n→any→n pattern, which
would reconfirm the other one and we would also expect that
doPlay does not trace to R2. Therefore, no matter how the
undefined trace is eventually resolved, we expect that doPlay
does not trace to R2. Knowing about the undefined trace
would only influence our certainty about the expectation
but not the expectation itself. Reasoning in the presence of
incomplete input RTMs is thus possible. Algorithm in List-
ing 3 thus also expands on the pure/mixed trace/no-trace
computation. For example, we see that a no-trace expec-
tation may lead to an incompleteness failure only if both
#callerU and #calleeU are greater than zero. In the case
of doPlay, #calleeU is not zero and hence the algorithm re-
turns a mixed no-trace. Pure trace/no-trace patterns are
found only if #callerU and #calleeU are zero.

4.10 Algorithm for Validation
Based on the mechanism for computing an expectation for

a given method and requirement, trace validation is quite
trivial. Algorithm 4 expands on Algorithm 1 we introduced
earlier. It iterates over every RTM cell and the valida-
tion algorithm is composed of two parts: 1) to compute
an expectation via getExpectation and 2) to compare the
expectation with the actual RTM value via validateCell.
The getExpectation algorithm distinguishes between inner
nodes and leaf nodes. Note that the algorithm for com-
puting expectations of incomplete RTM cells (Algorithm 3)
subsumes the earlier Algorithm 2. The expectation returned
by it is a tuple containing the value (TRACE, NO TRACE,
FAIL) and the category (MISSING, BOUNDARY, INCOM-
PLETE, PURE, MIXED). The value of the expectation is
then compared to the value of the RTM cell. If the ex-
pected value matches the current value then the cell is pre-
sumed correct. Otherwise, it is tagged as erroneous. If the
computation of the expectation fails then this is reported
as a warning. A warning implies that the RTM cell could
not be validated automatically and requires manual check-
ing. Since we can establish the category of a cell (pure or
mixed trace/no-trace), it is possible to order the error feed-
back based on the different likelihoods associated with the
categories discussed next. It is noteworthy that the algo-
rithm is also able to detect missing calls or dead code if the
code has neither callers nor callees (see <FAIL, MISSING>

in getExpectation). Cells that are not called or do not call
cannot be validated by our approach. However, this fail sce-

nario is a factor of the input and not a characteristic of the
approach. In the most extreme case, no call graph is given
as input in which case no method can be validated. We will
discuss in threats to validity why smaller numbers of missing
calls are unlikely to strongly influence our algorithm.

Listing 4: Validation Algorithm
va l i d a t eC e l l ( RTMCell c )

expect = getExpectat ion ( c . method , c . req )
i f ( expect . value=FAIL or c . value=UNDEFINDED)

return <WARNING, expect . category>
else i f ( c . value = expect . value )

return <CORRECT, expect . category>
else

return <ERROR, expect . category>

getExpectat ion ( Method m, Requirement r )
i f ( isInnerMethod (m) )

return get InnerExpectat i on (m, r )
else i f ( isLeafMethod (m) )

return getLea fExpectat i on (m, r )

return <FAIL , MISSING>

4.11 Likelihoods on Gold Standard
Section 4.1 claimed in several places that our understand-

ing of the adequacy of the introduced patterns is based on
empirical data on four case study systems. We can think of
this as a calibration step to understand the performance of
our approach under ideal circumstances (ideal because the
gold standards are of good quality). This performance is
expected to decrease as the quality of the RTM decreases.
This is explored in the evaluation section later.

We investigated each category (fail, mixed, and pure for
trace and no-trace) in terms of correctness and coverage.
Table 3 depicts our findings. The coverage represents the
percentage of the cells that fall into a given category. The
percentages for coverage add up to 100% for the entire RTM.
The correctness refers to the likelihood of our algorithm val-
idating a cell of its respective category correctly (e.g., identi-
fying an incorrect no-trace or trace in the RTM). This data
is based on the gold standards of the four cases study sys-
tems. As was already suggested earlier, the likelihoods differ
depending on category and system. By considering combi-
nations of patterns and dominance, we see that many cells
are validated with high likelihoods of correctness. For exam-
ple, line 4 ”n (pure)” in Table 3 depicts the correctness and
coverage for ”pure no-trace” cells, which are cells where only
n→any→n patterns are found. We see that our approach
is 96-99% likely to correctly validate such cells and 18-56%
of all RTM cells fall into this category. Pure trace cells are
also validated with high correctness (line 5). The correct-
ness is a bit lower for mixed traces and mixed no-traces;
however, do note that these kinds of cells are encountered
less often (only 2-9% of all cells are mixed traces). The
lower likelihoods of correctness thus do not affect the overall
performance strongly; however, the qualities are still high
compared to manual trace validation. As was discussed, the
approach fails for pure boundary methods and only 3-8%
of inner methods and 1-9% of leaf methods fall into this
category. This is a low percentage and implies that our algo-
rithm is able to validate most RTM cells. To summarize this
figure, Table 4 provides overall precision and recall numbers:



Table 3: Coverage (Cov.) & Correctness (Cor.)

Cor. Cov. Cor. Cov. Cor. Cov. Cor. Cov.

fail N.A 6% N.A 5% N.A 3% N.A 8%

n (mixed) 74% 3% 79% 6% 85% 6% 76% 4%

t (mixed) 85% 3% 76% 3% 66% 2% 67% 3%

n (pure) 98% 19% 96% 36% 99% 57% 96% 28%

t (pure) 96% 15% 90% 2% 92% 1% 92% 6%

fail N.A 9% N.A 4% N.A 1% N.A 7%

n (mixed) 75% 2% 92% 3% 90% 2% 79% 1%

t (mixed) 75% 4% 41% 3% 41% 1% 46% 1%

n (pure) 90% 23% 95% 33% 98% 26% 91% 30%

t (pure) 87% 16% 58% 4% 65% 1% 57% 13%

Chess Gantt JHotDraw VoD

Leaf

Inner

Table 4: Precision & Recall on Gold Standard
VoD Chess Gantt jHotDraw

Precision 85.3% 94.1% 92.1% 92.8%
Recall 82.4% 84.3% 90.2% 96.1%

Precision =
Correctly V alidated Cells

V alidated Cells (Correctly + Incorrectly)

Recall =
Correctly V alidated Cells

Correctly V alidated Cells+ FailedCells

Precision reflects the ratio of correctly validated cells of
totally validated cells (including wrong validation). Recall
reflects the number of cells that our approach failed to vali-
date compared to the ones it correctly validated (i.e., missing
validations). We see that both precision and recall are very
high, mainly because pure trace/no-trace situations are very
common.

5. EVALUATION
In this Section, we demonstrate the ability of our approach

to validate RTMs of arbitrary quality.

5.1 Precision and Recall on Erroneous RTMs
Considering the nature of our patterns, a random error

in the RTM is easily identifiable because our algorithm fails
only in case of a coordinated set of errors: i.e., to change
a likely trace to an unlikely trace for a given method and
requirement, requires all caller and callee ’t’s to be changed
to ’n’s – an unlikely scenario. However, are RTM errors
random or are these errors concentrated in certain areas of
the code which increases the chances of a coordinated error?
We thus conducted an experiment where 85 subjects were
asked to identify the traceability for the larger two systems
in our study: Gantt and jHotDraw. The subjects had to
inspect the code and then provide traces. Due to the effort
involved, each subject typically investigated a part of the
original RTM. We then obtained a wide spread of RTM qual-
ities by seeding the gold standard with a variable number of
subject traces. The worst RTM we validated included the
errors from all subjects combined. This process reflects in-
dustrial practice where traces are often captured by multiple
developers and are thus expected to have mixed qualities.

We validated the combined RTMs using our algorithm.
The validation results were compared to the gold standards
to test the level of correctness of the feedback computed by
the algorithm. We measured this feedback in terms of pre-
cision and recall (introduced above) and Figure 6 depicts
the precision and recall in relationship to the percentage of

80,00%
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95,00%

100,00%

0,00% 20,00% 40,00% 60,00% 80,00%
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jHotDraw Precision jHotDraw Recall

Gantt Precision Gantt Recall

Figure 6: Precision and Recall decreasing slightly
with increasing erroneous RTMs

errors introduced by the subjects (relative to the gold stan-
dard). Since the traceability literature usually attributes
errors relative to the correct number of traces, the x-axis of
the Figure 6 reflects erroneous and missing traces relative to
the total number of traces. For example, if a requirement
traces to 100 methods then 10% error implies that the traces
of 10 of these 100 methods were either missing (a no-trace
instead of a trace) or wrong (a trace instead of a no-trace).
The Figure combines all cells of a RTM and hence combines
all requirements tested. There were some variations among
the requirements but all requirements we tested behaved
similarly.

Our observation on both Gantt and jHotDraw is that pre-
cision and recall were slightly affected by subject errors. The
quality fell by less than 5% in the worst case. Note that
this data is based on the validation of over 80,000 cells with
human generated tracing errors among the nearly 30,000
subject traces, which also explains the difference between
the maximum number of errors seeded for jHotDraw (about
90%) and the maximum number of errors seeded for Gantt
(about 50%). The seeded erroneous traces are arbitrary dis-
tributed over both systems. This demonstrates that our
approach remains useful in RTMs of varying qualities.

5.2 Precision and Recall on Incomplete RTM
Traditionally, RTMs are presumed to be complete because

most applications of traceability require this. Yet, we see
trace validation as an ongoing process that must not nec-
essarily start with a complete RTM but could also start at
a time where traceability knowledge is only partially avail-
able. Our approach works for both complete and incomplete
RTMs as was discussed earlier. This section investigates the
impact of incompleteness onto trace validation quality.

Figure 7 depicts precision and recall with increasing in-
completeness of the input RTM. The incompleteness of the
RTM designates commonly the number of cells which are
not yet traced. These cells could be randomly distributed
in the RTM, aligned in a row when a method has not been
traced, or aligned in a column when a requirement has not
been traced. Since there are no studies available on how and
why traces are incomplete and since the 85 subjects chose
not to leave cells incomplete either, we resorted to random
seeding to evaluate incompleteness (i.e., removing random
cells from gold standard). For example, at 50% incomplete-
ness, half the input RTM cells are undefined (i.e., ’U’) and
the other half is validated.

The algorithm generating expectations for incomplete in-
put (see Listing 3) isolates the cells which are affected by in-
completeness under the category <FAIL,INCOMPLETE>. The
increasing number of undefined cells will thus increase the
total number of cells for which our validation algorithm (see
Listing 4) would report a <WARNING> and can not validate



Figure 7: Precision is unaffected by incompleteness.
Recall falls linearly only with level of incompleteness

them. Considering the Precision and Recall formulas pre-
sented in Section 4.11, we deduce that the increasing <FAIL>

cells due to incompleteness will only decrease the recall, but
do not affect the precision, which is clearly visible in Figure
7 where only the recall is falling linearly but the precision
is largely unaffected by the increasing incompleteness. This
implies that the correctness of the approach remains high
even in the presence of incompleteness.

5.3 Scalability
Our approach is fully automated and tool supported. The

computational overhead is linear with the size of the RTM
with the largest RTM requiring less than 3 minutes valida-
tion time. Most of the runtime was required for parsing the
execution log to build the call graph, which is usually per-
formed only once – when the data is loaded the first time.
The actual validation algorithm needed less than 100 ms in
all cases studies since the validation algorithm is based on
a rather simple but effective counting scheme for computing
expectations out of the surrounding traces. (recall Section
4.8). Further details about the tool used in this study may be
found under: http://www.sea.uni-linz.ac.at/tools/TraZer .

5.4 Threats to Validity
We used four systems of different domains (see Table 1)

with RTMs of different sizes. Each cell in a RTM was val-
idated separately and this large number of cells makes our
findings statistically representative. To assess precision and
recall, we relied on a gold standard provided by the origi-
nal developers of the study systems. The gold standard was
probably not perfect. However, given that it requires a co-
ordinated set of errors to fool our patterns and given that 1)
so many patterns were validated, 2) the patterns exhibited
the roughly same effects on all four study systems, and 3)
the study systems were independently developed by different
people who did not know each other, leaves us to conclude
that the studies are representative.

However, we can see two situations where our algorithm
would fail: 1) a requirement being implemented in very few
methods only or 2) the methods implementing a requirement
being not connected (no calling relationships). As to point 1:
a requirement that is implemented in a single method only
would appear like an erroneous trace because it would be
surrounded by methods that do not trace (n-surrounding).
However, it is possible to detect such situations in advance
by investigating the input RTM. Our algorithm should not
be used on such requirements but we believe such cases to
be rare. As to point 2: if the methods implementing a re-
quirement were not connected then they would also be de-
tected as erroneous traces because each method would be
n-surrounded. However, connectedness was confirmed on all
59 requirements we investigated, covering four diverse case

study systems. Most of these requirements were functional;
however, the jHotDraw system also had 5 non-functional
requirements. Although we are not claiming that these re-
quirements are of all possible types, we believe that they
are representative as they were selected and traced by in-
dependent developers of each system. While the issue of
connectedness warrants further investigation, at present it
appears to be a reasonable assumption for most situations.
Like point 1, a problem with the connectedness could be
detected by investigating the input RTM.

This work presumed that the input call graph was reason-
ably correct and complete. Unfortunately both assumptions
might be unsatisfied under certain circumstances. On the
one hand, incorrect calling relationships could be caused by
undetected bugs in the code. Our assumption is that the
code is of reasonably good quality since trace validation is
most relevant during software maintenance where, typically,
a mature code base exists. Still, isolated bugs may exist.
But in order to affect our reasoning, two surrounding call-
ing relationships should be reverted to the wrong kind of
traces(i.e. t-surrounding pattern to n-surrounding pattern
or vice-versa). In other words, the very nature of our pat-
terns makes it unlikely that isolated code errors significantly
influence the quality of the approach. On the other hand,
incompleteness in the call graph relationship is more likely
when using dynamic call graphs as in our case. Yet, the
level of completeness is measurable through metrics that as-
sess the test coverage (e.g., branch coverage tests). Even
if the call graph is incomplete, certain patterns would be
unaffected. For example, a t-surrounding pattern can never
become an n-surrounding pattern with more calling relation-
ships. Static call graph may be an alternative that does
not require a running system, but with a down side that
we would have to deal with both incomplete (e.g., polymor-
phism) and incorrect (e.g., dead code) code relationships.

Finally, our work used homogeneous levels of granular-
ity (methods) in call graphs and RTMs. We presume that
our approach would perform similarly on other homogeneous
levels of granularity (e.g., statements or classes) though the
likelihoods would presumably be different. This assumption
will be assessed in future work.

In summary, we believe that there is no significant threat
to the internal validity and the data/experiments were di-
verse enough to imply more general applicability – hence we
see no major threat to the external validity either. The only
uncertainty was our evaluation on incompleteness where we
used random seeding. This may not have been appropriate;
however, we were unable to find any literature that char-
acterized incompleteness and believe this to be mostly an
organizational issue that, from an outsider’s perspective, ap-
pears random.

6. CONCLUSION
This paper represents an important step towards improv-

ing traceability automation because state-of-the-art predom-
inantly focused on recovering requirement-to-code trace links
but not maintaining them. Since automated trace recov-
ery or recovery done by subjects not familiar with the code
rarely exceeds 50% correctness, we believe that traces should
be captured early on by subjects familiar with the system.
However, these traces then need to be maintained like other
development artifacts with the system. This paper demon-
strates a novel approach to maintaining requirements-to-

http://www.sea.uni-linz.ac.at/tools/TraZer


code traces by validating them in context of code calling
relationships. We introduced an algorithm that computes
trace expectations based on likely and unlikely patterns and
then compares them with the given traces. Errors are de-
tected whenever the given traces differ from the expected
traces. Empirical evaluation on over 80,000 of RTM cells
have shown that the error feedback produced by our ap-
proach is of high precision and recall and the quality of the
feedback being lightly affected by the quality of the given
traces only. The approach scales, is fully automated, and
tool support is provided. The approach applies to functional
and non-functional requirements, whether they be indepen-
dent or cross-cutting.
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CERBERUS: tracing requirements to source code
using information retrieval, dynamic analysis, and
program analysis. In 16th IEEE International
Conference on Program Comprehension, pages 53–62,
Amsterdam, The Netherlands, June 2008.

[8] A. Egyed, F. Graf, and P. Grunbacher. Effort and
quality of recovering Requirements-to-Code traces:
Two exploratory experiments. In 18th IEEE
International Requirements Engineering Conference,
pages 221–230, Sydney, Australia, Sept. 2010.

[9] A. Ghabi and A. Egyed. Observations on the
connectedness between requirements-to-code traces
and calling relationships for trace validation. In 26th
IEEE/ACM Internation Conference on Automated
Software Engineering, 2011.

[10] O. Gotel and C. Finkelstein. An analysis of the
requirements traceability problem. In Proceedings of
IEEE International Conference on Requirements
Engineering, pages 94–101, Colorado Springs, CO,
USA, Apr. 1994.

[11] J. Hayes, A. Dekhtyar, and S. Sundaram. Advancing
candidate link generation for requirements tracing:
the study of methods. IEEE Transactions on Software
Engineering, 32(1):4–19, Jan. 2006.

[12] M. Jiang, M. Groble, S. Simmons, D. Edwards, and
N. Wilde. Software feature understanding in an
industrial setting. In 22nd IEEE ICSM, pages 66–67,
Philadelphia, PA, USA, Sept. 2006.

[13] W. Kong, J. Hayes, A. Dekhtyar, and J. Holden. How
do we trace requirements? an initial study of analyst
behavior in trace validation tasks. In Fourth
International Workshop on Cooperative and Human
Aspects of Software Engineering, May 2011.

[14] A. Marcus and J. I. Maletic. Recovering
documentation-to-source-code traceability links using
latent semantic indexing. In Proceedings of the 25th
ICSE, ICSE ’03, pages 125–135, Washington, DC,
USA, 2003. IEEE Computer Society.

[15] M. Marin, A. V. Deursen, and L. Moonen. Identifying
crosscutting concerns using Fan-In analysis. ACM
Transactions on Software Engineering and
Methodology, 17(1):1–37, Dec. 2007.

[16] C. McMillan, D. Poshyvanyk, and M. Revelle.
Combining textual and structural analysis of software
artifacts for traceability link recovery. In ICSE
Workshop on Traceability in Emerging Forms of
Software Engineering, pages 41–48, Vancouver, BC,
Canada, May 2009.
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